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ABSTRACT

As the U.S. population ages, Alzheimer’s disease and related dementias (ADRD) cases are increasing, resulting in longwait times
for specialist care. We review state-of-the-art artificial intelligence (AI) applications in ADRD care, from streamlining clinical
diagnosis to pioneering novel digital biomarkers. Near-term AI applications include neuroimaging interpretation, conversa-
tional agents for patient interviews, and digital cognitive assessments. Large language models show promise as collaborative
partners, helping clinicians interpret complex data while supporting patients and caregivers. Emerging digital biomarkers—
speech analysis, passive monitoring through wearable devices, electronic health record analysis, and multiomics—offer
potential for continuous monitoring to detect cognitive decline years before traditional assessments. Despite the acceleration
of AI innovation,most of these systems are inaccessible in clinical practice. Implementation bottlenecks include limited external
validation, technical challenges, model biases, infrastructure, and regulatory requirements. This review aims to help
neurologists navigate this rapidly evolving AI landscape and prepare for implementation in ADRD care.
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Introduction

As the U.S. population ages, the number of people with Alzheimer’s
disease and related dementias (ADRD) is rapidly increasing,1,2 with
lifetime dementia risk reaching 48% for women and 35% for men
after age 55, and U.S. cases projected to double by 2060 to 1million
annually.3 Early detection and precise diagnosis are crucial for
proper access to quality care, eligibility for new and emerging
disease-modifying therapies, and enabling research to advance the
field. Unfortunately, more than 50% of dementia diagnoses are
delayed until moderate or advanced stages in primary care,4,5 with
greater delays among racial and ethnic minorities.6

There aremany challenges with diagnosing neurodegenerative
diseases. Often, primary care providers (PCPs) are the first clini-
cians to hear concerns from patients and their informants, but
most PCPs cite a lack of time and confidence for the diagnostic
process,7,8 preferring to refer patients to specialists. Consequent-
ly, the demand for dementia specialists greatly exceeds the
available supply, with the gap continuing to widen.9–11 The
average wait times for dementia specialists are projected to
exceed 40 months by 2027, with rural areas facing three times
longer delays compared to urban regions.12 Beyond access issues,
diagnosis is challenging, requiring time-consuming data collec-
tion and nuanced interpretation.

After diagnosis, challenges with management are growing as
new therapeutics with intensive requirements for monitoring are
emerging, adding both urgency and complexity.13,14 Many PCPs
and general neurologists struggle to keep pace with the rapid
advances in the field, which includes maintaining awareness of
research studies that could potentially benefit their patients and
the ADRD field. Furthermore, new care models such as those
proposed by the Centers for Medicare and Medicaid Services15

demand additional resources that our current workforce is ill-
equipped to support.

Against this backdrop, artificial intelligence (AI) has garnered
significant attention as a potential solution. AI encompasses a
spectrum of complementary approaches, from traditional ma-
chine learning (ML) methods that excel with structured clinical
data, to deep learning systems that identify complex patterns in
neuroimaging, to generative AI based on large language models
(LLMs). LLMs in particular have been advancing rapidly, which is AI
trained on vast amounts of text, excelling at language under-
standing and generation. AI systems using LLMs can process
multiple data modalities simultaneously—integrating clinical
text, medical images, audio, and other data types. Advances
across the spectrumof AI promise to enhance diagnostic accuracy,
accelerate clinical workflows, and democratize access to special-
ized expertise.
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In the field of ADRD, traditional ML paradigms have consider-
able utility in analyzing unified data modalities, including bio-
markers,16 genetic information (including emerging polygenic risk
scores),17 neuroimaging,18 and connected speech.19 Empirical
evidence supporting the utility of LLMs in neurodegenerative
disease characterization continues to emerge. For example,
GPT-4 exceeded mean human performance on a neurology
board-style examination20 and provided neuropathologic differ-
ential diagnoses with high correlation to experts using human-
curated clinical summaries.21 There are also several techniques
that can further improve an LLM’s performance. A diagnostic
pipeline that mimics the clinical process/reasoning of a physician,
including chain of thought reasoning with LLM prompts, has
shown performance boosts.22 Retrieval augmented generation
can be used to ground the LLM in the most up-to-date clinical
diagnostic criteria for all neurodegenerative diseases.23

Many AI-based tools can now be used in the clinic; however, the
level of evidence supporting their clinical use varies widely, and
many implementation challenges prevent widespread use. While
AI has yet to be integrated into routine ADRD clinical care, recent
developments suggest this may soon change. AI capabilities have
advanced at unprecedented rates over the past 2 to 3 years,
coinciding with a sharp increase in FDA-cleared or approved AI-
based medical devices.24,25 With many promising applications on
the horizon for ADRD, clinicians need to understand the current
state of AI research in this field to prepare for responsible,
evidence-based implementation and help shape how these tech-
nologies enter clinical practice.

This review examines AI applications in ADRD through the lens
of clinical practicality, organizing discussion around progress from
familiar clinical data enhanced by AI to emerging digital biomark-
ers and novel data sources that may transform future practice. We
address current limitations and provide clinically relevant AI
knowledge to aid neurologists navigating this rapidly evolving
landscape while maintaining appropriate skepticism about unva-
lidated or poorly validated technologies.

AI-Enhanced Collection and Interpretation
of Standard Clinical Data
Understanding the Patient’s History
The constraints of brief office visits present significant challenges
for diagnosing neurodegenerative diseases. Physicians, faced with
limited time, may struggle to effectively review a lengthy patient
chart or gather comprehensive patient histories from distressed
patients or their caregivers. AI could likely help with these
limitations.

Even before the patient is seen, AI can extract value from large
volumes of text, parsing scanned documents and synthesizing
electronic health record (EHR) data to extract relevant history or
generate targeted questions for assessment. AI-powered conver-
sational agents are demonstrating the capabilities needed to
gather an effective patient history, particularly using LLMs. LLMs
can enable conversational agents to interview patients efficiently
and empathetically,26 adjust explanations to a patient’s education
level, and speak in most patients’ preferred languages.27 More
recent advancements with voice-based conversational agents28

could interact with patients over the phone to overcome barriers
with the writing and typing typically required of traditional
questionnaires, and also increase access for patients who are of
lower socioeconomic status, limited English proficiency, or elder-
ly.29–32 Assuming unconstrained time, these agents may eventu-
ally be able to collect a history in a manner comparable to
specialists. Still, significant work is needed. Most have been tested
only with text-based, low-stakes interactions,33–38 can perform
worse with non-English speaking people,39 and likely will require a
monitoring system that detects emergency situations during
these interviews, raising implementation challenges.

Once valuable information is collected from the EHR and inter-
view, LLMs can summarize it into a history of present illness or
outline, allowinga clinician toquickly identify concerningpatterns.40

Reliable summarization is critical in cognitive impairment contexts,
as detection of subtle symptom changes over time is essential for
early diagnosis and management. It will be challenging to ensure
that generated summaries are consistently comprehensive and
accurate, particularly as hallucinations (fabricated information) are
still a concern with LLMs. Emerging promising solutions include the
adoption of AI confidence scores and secondary AI models that
critically evaluate the summaries.41–43

AI transcription and summarization are already being used
during the visit as healthcare institutions are widely adopting
ambient AI scribes.44 A growing number of companies are
offering this technology, which records the clinic visit between
the patient and the clinician, then automatically transcribes and
summarizes patient encounters just as an in-person medical
scribe would. These AI scribes still make mistakes, but clinical
implementation has moved forward as clinicians can feasibly
check over the summaries and correct them before signing their
notes.

LLMs as Collaborative Partners
A particularly promising development is the emergence of LLMs as
intuitive interfaces between clinicians and complex data—both
traditional clinical data as well as the outputs from AI-enabled
digital biomarkers and emerging data sources. LLMs can serve as
collaborative partners that help clinicians interpret familiar clinical
information (e.g., neuroimaging, laboratory results, and clinical
notes) by incorporating the latest evidence-based information
and highlighting subtle patterns that might be overlooked in busy
clinical settings.45–47 Several companies are beginning to create
such an interface, with some being used widely by clinicians using a
text-only chat interface with responses grounded in clinical
evidence.

Importantly, as new AI tools become validated and enter
clinical practice, their analytical outputs will become part of the
complex data landscape that clinicians must interpret. LLM capa-
bilities have the potential to translate and integrate these AI-
derived insights, explaining in natural language what various AI
tools have detected and how these findings fit together with
traditional clinical data to inform diagnosis and management
decisions (Fig. 1).

Beyond supporting clinicians, LLMs also hold significant prom-
ise for directly assisting patients and caregivers throughout the
dementia journey. The conversational abilities of these models
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create opportunities for providing companionship, helping
patients understand their diagnosis and treatment options, and
guiding caregivers through complex care decisions.48 As cognitive
abilities decline, patients may find AI companions more accessible
than traditional educational resources,49 while caregivers can
receive personalized guidance onmanaging behavioral symptoms
or navigating healthcare systems. However, as AI becomes more
integrated into dementia care, it’s important to consider how
these technologies will reshape care relationships and decision-
making dynamics within families and care teams, ensuring that AI
enhances rather than replaces the human connections central to
quality dementia care.50

This dual capability—supporting both clinicians as well as
patients and their families—positions LLMs as comprehensive tools
that could address multiple challenges across the continuum of
dementia care.48

Neuropsychological Testing
When concerning symptoms are identified, a cognitive assess-
ment looking for objective evidence of cognitive impairment is
required. Current challenges include cost, time required for

clinicians to administer tests, specific training even for the most
common assessments (e.g., MMSE, MoCA), and language and
cultural biases that complicate interpretation in medically under-
served populations.6,32,51 Digital cognitive assessments can en-
able AI integration as they can capture potentially meaningful
nuances in performance (e.g., trial-level data, response times) that
are not possible to record or quickly interpret with traditional
paper-based cognitive tests.

More broadly, several validated digital cognitive assessment tools
with and without AI integration are now available for clinic or
remotely at home, though with varying levels of validation.52,53

Some of these tools have demonstrated great potential to scale. For
example, the TabCAT-Brain Health Assessment developed at UCSF is
an iPad-based in-clinic assessment that includes immediate scoring,
outperforms traditional paper-based assessments, has had organic
adoption across several UCSF-affiliated PCP clinics, and is free for
primary care use.54–57 Remote, self-administered cognitive tasks
delivered on participants’owndevices are also proving both practical
and psychometrically sound in AD research. A recent scoping
review58 showed encouraging adherence rates among research
participants and moderate correlations with gold-standard neuro-
psychological batteries (r¼ approximately 0.53–0.70).

Fig. 1 Comparison of traditional versus AI-enhanced methods. Left panel (traditional care): brief cognitive testing (e.g., MMSE, MoCA), clinical
interviews, physical examinations, and patient education are constrained by time-limited office visits. Clinicians must manually interpret
heterogeneous data sources—cognitive test results, history, neurological examination findings, neuroimaging, electronic health record (EHR)
information, and laboratory or biomarker results such as cerebrospinal fluid and plasma assays. Experienced clinicians may notice subtle speech
changes or consider patient-provided digital data (e.g., sleep tracking), yet these remain underutilized without artificial intelligence (AI) support.
Parsing large EHRs or integrating omics-level information is rarely feasible in traditional workflows. Right panel (AI-enhanced care): artificial
intelligence (AI) systems assist with collecting and integrating multimodal information from structured and unstructured data—including clinical
text, speech, wearable devices, EHRs, imaging, and omics—to augment diagnostic reasoning and personalize care. Most of this data can be
collected outside the time-limited office visit. A Large language model (LLM) system designed for medical assistance, grounded in the latest
evidence, highlights and explains salient findings as well as assists with differential diagnosis. This integration reduces clinician burden, enhances
diagnostic accuracy, and facilitates earlier detection and triage to appropriate care settings.
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Further studies show promise of AI applications in optimizing
cognitive test administration and scoring across diverse cultures and
health literacy levels.59,60 For example, PENSIEVE-AI uses an image-
based deep learning model to detect mild cognitive impairment
(MCI) and dementia based on touch-screen tablet drawing tasks,60

theNovoic appcollects speech recordings fromstory recall tasks and
analyzes them with a fully automated AI-based transcription and
analysis pipeline for detection of Alzheimer’s disease,61 and the
Altoida app delivers augmented reality tasks and analyzes functional
motor behaviors collected via accelerometer, gyroscope, and touch
screen interactions to detectMCIwithAImodels.62 LinusHealth also
developed a brief digital cognitive battery that used AI models to
identify subtypes of MCI.63 Beyond task performance, a growing
number of studies are also using AI to evaluate eye tracking data
during digital cognitive and oculomotor tasks.64

A particularly promising emerging tool is Virtual Reality, which
can be an immersive and engaging experience with almost
limitless possibilities for testing cognition.65 There is growing
evidence that VR-based cognitive assessments exhibit ecological
validity by simulating real-world tasks and aligning with estab-
lished neuropsychological and functional measures.65,66 Incorpo-
ration of LLMs in virtual reality has enabled engaging virtual
companions for persons living with dementia,49 which makes
virtual psychometrists particularly promising.

The landscape of digital cognitive assessments continues to
evolve, with emerging tools increasingly incorporating AI to
enhance the administration, scoring, and feedback of results.67

Digital cognitive assessments can be used to evaluate for clinical
manifestations of neurodegenerative disease or other cognitive
disorders, but clinical follow-up is always needed to make a
diagnosis. Also, more validation of remote and AI-powered cogni-
tive assessments in clinical populations outside highly engaged
research registries is needed to support widespread clinical
deployment.

Physical Examination
Physical examination continues to be important in obtaining a
diagnosis, including themotor findings associatedwith Lewy body
disease, corticobasal syndrome, progressive supranuclear palsy,
amyotrophic lateral sclerosis, and many other conditions. In
addition, the absence of motor findings in AD is also important.
While an in-person physical exam is ideal, physical exam findings
for these syndromes can often be uncovered through video visits,
which can increase accessibility for patients who cannot feasibly
travel to see a specialist. Possibilities include video interpretation
of speech patterns, motor planning and execution, gait, balance,
and others. New multimodal AI models have made significant
progress in describing video content, such as surgeries, making
video data a promising method for AI decision support with
further research.68 Recent studies have shown that short videos
captured on consumer-grade technology can detect Parkinson-
ism.69,70 Additionally, passive data collection, discussed below,
may soon augment or even replace some physical exam findings.

Neuroimaging
Neuroimaging with MRI and PET is a cornerstone of the
diagnosis of etiologies of neurodegenerative disease, including

the exclusion of readily treatable causes of dementia, assessing
vascular etiologies of dementia, and observing spatial patterns of
atrophy (MRI) or biomarker presence and location (PET). The
complexity of neuroimaging interpretation in neurodegenerative
diseases has made it an active area of AI research, with inves-
tigators exploring automated approaches to detect subtle
changes that may be missed in routine clinical reading.

However, consistent imaging protocols are essential for AI
model accuracy, as systematic variation can significantly impact
performance. Initiatives like the Alzheimer’s disease imaging
initiative (ADNI) have established best practices for acquisition
and preprocessing, while large-scale studies such as the UK
Biobank have advanced standardization for diverse MRI techni-
ques.71–74 These standardization efforts have greatly aided in
advancing reliable AI imaging research.

Traditional AI methods (i.e., ML models) have made significant
progress with the classification of disease states. Notably, logistic
regression models are finding widespread research application in
binary classification scenarios, particularly in distinguishing be-
tween healthy controls and individuals with Alzheimer’s disease
using MRI.18 For example, support vector machines have demon-
strated particular efficacy in identifying imaging biomarkers
associated with frontotemporal dementia.75

The emergence of deep learning architectures, particularly
convolutional neural networks (CNNs), has revolutionized neuro-
imaging analysis, including MRI and PET scan interpretation.76

These sophisticated models demonstrate remarkable precision in
identifying disease-specific features, such as patterns of brain
atrophy characteristic of Alzheimer’s disease. CNNs trained on
structural MRI data have shown particular prowess in detecting
subtle patterns of cortical thinning associated with various neuro-
degenerative conditions.18

Substantial work has been done to develop AI models that can
aid in neurological diagnoses based on multi-sequence brain MRI
or PET, and more recent efforts involve the development of
multimodal AI models that incorporate clinical, laboratory, and
imaging data for differentiating etiologies of dementia.77–79 A
recent example is work from the Mayo Clinic highlighting an AI
model that can detect nine different neurodegenerative pheno-
types from FDG-PET images, with initial validation from ADNI with
AUC of 0.93.80 Incorporating AI interpretation of MRI atrophy
patterns, in particular, as part of an AI diagnostic tool will be of
great value to clinicians.

AI-Enabled Digital Biomarkers and
Emerging Data Sources
Speech
Speech is a rich source of cognitive and behavioral information,
integrating both linguistic content and vocal motor features. As
such, it is increasingly recognized as a promising digital biomarker
for the early detection and monitoring of ADRD.81,82 Automated
speech analysis can capture deviations in speech and language
specific to dementia syndromes. In AD, early language changes
include word-finding difficulties, reduced lexical diversity, and
vague or empty speech.83–85 Acoustic features in AD may include
slower articulation rate, increased pauses, and reduced prosody,86

though these are typically more subtle than in disorders with
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prominent motor speech involvement, such as Parkinson’s dis-
ease87 or the nonfluent variant of primary progressive aphasia
(PPA), which is additionally marked by agrammatism.88 In the
logopenic variant PPA, speech is characterized by frequent pauses,
word-finding failures, and impaired repetition,89 while in the
semantic variant PPA, spontaneous speech is fluent but marked
by semantic errors, reduced specificity, and loss of content due to
degradation of conceptual knowledge.90 Even in dementia syn-
dromes where language symptoms are not dominant, such as the
behavioral variant of frontotemporal dementia, automated
speech analysis can detect subtle linguistic and acoustic patterns
that reflect underlying cognitive, behavioral, or socio-emotional
changes.91,92

Automated speech analysis enables the quantification of both
how something is said through acoustic features (e.g., pitch
variation, timing) and what is said through linguistic features
(e.g., lexical diversity, semantic specificity, and syntactic complex-
ity). Most pipelines follow a two-stage process: speech feature
extraction—using natural language processing (NLP) and acoustic
signal processing—followed by statistical analysis using MLmodel-
ing or inferential statistics, including general(ized) linear models.

Both traditional ML approaches (e.g., support vectormachines,
logistic regression, XGBoost) and deep learning methods (e.g.,
convolutional and recurrent neural networks, transformers) have
shown success in distinguishing individuals with AD, MCI, FTD,
including PPA, or PD from healthy controls.93–96 While classifica-
tion tasks are common in automated speech analysis in neurode-
generative research, several studies have employed regression
models to predict continuous cognitive outcomes (e.g., MMSE)
97,98 or to explore relationships with imaging and biomarker
measures.99–101 Additionally, recent approaches have generated
high-dimensional representations—known as embeddings—that
capture nuanced relationships within audio (e.g., wav2vec2) or
text (e.g., BERT) to extract complex patterns,102–104 enabling a
more holistic approach to speech analysis than using individual
features, yet at the cost of transparency.

Growing access to speech data through mobile platforms,
telehealth, and ambient voice technology is accelerating progress
in this domain.105,106 Although most studies to date are cross-
sectional and research-focused—and important ethical challenges
must be addressed prior to clinical implementation107—speech
remains one of the most clinically viable digital biomarkers given
its scalability, ecological validity, ease of longitudinal collection,
and potential for passive capture in real-world settings.

Passive Digital Biomarkers
Passive monitoring via digital health technology is a complemen-
tary approach to overcome the limitations of traditional neuro-
psychological and neurologic evaluations.108 Emerging methods
have shown excellent feasibility to unobtrusively capture objective
and naturalistic behavioral data in older adults through the use of
sensors that are either worn or embedded within objects that
people use regularly, such as smartwatches, smartphones, and
other placeable sensors (e.g., a GPS sensor placed in one’s car).109

These technologies can capturemulti-domain clinical data reflect-
ing cognitive, behavioral, social, and physical function without any
added patient burden, allowing for the development of digital

biomarkers of ADRD.110 A growing number of studies suggest
these passive monitoring methods can detect subtle changes in
neurodegenerative disease as they are happening in real time,
even before symptoms become noticeable to individuals or their
loved ones. For example, changes in physical activity and move-
ment patterns, driving behavior, sleep patterns, everyday speech,
eye tracking, facial expressions, technology use, writing, texting,
and keyboard typing dynamics have all been shown to differenti-
ate those with and without neurodegenerative disease.111–119

Further, these passive digital biomarkers could also be applied
across culturally and linguistically diverse populations, as they are
less affected by the cultural and language biases that limit active
cognitive testing approaches. Passive approaches to data collec-
tion are also low-burden and scalable, with great potential to be
utilized as clinical diagnostic and monitoring tools with continued
validation.

One barrier to the clinical implementation of passive digital
biomarkers, however, has been the lack of computing resources
for storing and automatically processing and analyzing the large
amount of data collected from passive digital tools that continu-
ously monitor behavior over long periods of time.120 AI represents
a powerful part of the solution, with potential to identify data-
driven patterns of behavioral change associatedwith AD and other
neurodegenerative diseases through passive digital data.121 Given
the large amount of data that could be collected per person with
digital devices, AI-powered analytic methods also have the poten-
tial to detect person-specific changes—that is, shifts in behavioral
patterns unique to an individual—which could be used as a
screener to connect a patient with a clinician for follow-up. This
would be a powerful step toward a personalized medicine ap-
proach for dementia prevention, diagnosis, and treatment. While
the integration of AI analytics in passive digital biomarker research
is still only being used in research settings,122 this methodology
could eventually be used to improve detection and monitoring of
neurodegenerative disease-related changes in clinical practice, as
well as to monitor treatment outcomes in clinical trials in the near
future.

Novel Use of EHR Data
Recent work applying ML to real-world EHRs shows that inexpen-
sive, routinely collected data can flag patients at elevated risk for
future Alzheimer’s disease. Recent studies have used gradient
boosting trees and random-forest models to predict ADRD up to
5 years in advance (AUC>0.85) or to predict AD 7 years in
advance (AUC: 0.72), the latter using only diagnosis codes,
prescriptions, and common laboratory results.123,124 Comple-
menting these findings, another study incorporated functional
scales (iADLs/ADLs) and common labs from the EHR to separate
MCI (AUC: 0.75) and dementia (AUC: 0.96) from controls.125

Unsupervised AI approaches have also been applied to EHRs to
characterize dementia heterogeneity, identifying distinct disease
subtypes and progression patterns for patients with Alzheimer’s
disease and Parkinson’s disease.126–129

Unstructured EHR data is being increasingly utilized for de-
mentia as well. Advanced NLP models, such as AD-BERT, are
beginning to boost EHR-based prediction of Alzheimer’s disease
by mining the free-text of clinical notes.130 AD-BERT had
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impressive accuracy for predicting whether an MCI patient would
ever convert to AD (AUROC: 0.883 in an external cohort). This
model highlighted phrases such as “memory,” “MCI,” and “diffi-
culty recalling dates,” indicating that it captures linguistic cues of
emerging cognitive decline. Models such as AD-BERT could use
free text from notes to complement structured-data risk scores
and potentially flag high-risk MCI patients earlier, provided future
work validates these models. Unstructured data can also be used
for subphenotyping, as shown in the identification of three ADRD
subtypes in a recent study.131

A key caveat is thatmost EHR studies rely on ICD-9/10 codes for
progression labels rather than biomarker-confirmed diagnoses,
and any diagnostic misclassification in routine practice would
place an upper bound on reported AUROCs. High variations in data
quality may also introduce confounding covariates (e.g., age,
detection bias, indication bias) and technical biases (e.g., extent
of missingness, imputation approaches, ontology mappings) that
can also contribute to overly optimistic AUROCs reported. Fur-
thermore, given that neurodegeneration is a chronic disease
process, there is often heterogeneity in identifying an index
date, particularly for different neurodegenerative syndromes.
This can lead to AI models that excel in learning physician
behaviors (e.g., ordering for a cognitive test) that predict subse-
quent diagnosis in downstream visits (e.g., ICD code for dementia
given).132 Nevertheless, EHR research holds promise in highlight-
ing optimal care trajectories and pathways that can describe and
improve dementia management. Furthermore, the integration of
EHR datasets with biomarkers and neuropathology results will
greatly improve model specificity and clinical utility in the
future.133

Omics
AI-powered omics approaches hold significant promise for trans-
forming dementia care, from biomarker discovery to risk stratifi-
cation. Different types of -omics data, such as genomics,
epigenomics, transcriptomics, proteomics, metabolomics, and
lipidomics, can provide readouts of a patient’s biological state
that are not readily apparent from existing clinical laboratory
measures. AI-based approaches are uniquely suited to leveraging
such high-dimensional -omics data for potential clinical use, given
their ability to reveal nonlinear relationships across different
biological features that are difficult to observe by standard linear
or logistic association analyses.134 The use of AI for interpretation
of omics data for clinical use is in early development, but AImodels
have already been applied to genomic data to derive polygenic risk
scores for different diseases that outperform traditional risk scores
generated from linear models,135 and different types of blood-
based -omics data have been combined with neuropathology and
imaging data in amulti-modal AI model to identify subtypes of AD
and co-pathology.136,137 In certain early-onset or atypical demen-
tia cases, the presence of genetic variants of unknown significance
(VUSs) may represent undiagnosed pathogenic causes of disease,
but their uncertain classification limits clinical actionability.
Emerging AI models trained on evolutionary constraints, structur-
al features, or functional data are increasingly used to resolve the
significance of VUSs,138,139 and could help reclassify VUSs in
known ADRD risk genes (e.g., APP, PSEN1/2, MAPT).140,141

In addition to risk stratification and disease subtyping, AI
models have been proposed to align patient-specific omics sig-
natures with therapeutic interventions.142 This includes identify-
ing drugs that could reverse disease-related gene expression or
proteomic patterns through computational drug repurposing
platforms,143 as well as supporting patient stratification for
ADRD clinical trials based on predicted drug response.144 AI-
informed treatment approaches, while still in early development,
may become essential tools for optimizing dementia care but will
need to be paired with rigorous validation and clinical testing to
ensure safety and reliability.145

A number of challenges remain before more widespread use of
AI and -omics in the clinic. Current limitations include the high cost
of comprehensive biological testing, the lack of standardization
across laboratories, and technical challenges that come with
analyzing a huge amount of data where the number of measure-
ments far exceeds the number of patients studied, leading to
potential overfitting of the model and poor generalization across
different groups of patients. While AI models can help with this
dimensionality reduction, for example, by identifying the most
important features to focus on, interpretability has been a
challenge. However, costs are rapidly decreasing, and promising
methods of dimensionality reduction are being developed. De-
spite these challenges, it is likely that AI models that incorporate
multi-modal -omics data will eventually be developed for clinical
use that prove superior to single or small panel biomarker
measurements for risk stratification, diagnosis, staging, prognos-
tication, and tailored treatment selection in neurodegenerative
diseases.

See Table 1 for a summary of AI approaches across modalities
in ADRD, highlighting function, and clinical readiness.

Challenges and Considerations
Despite the successes with AI, there are still significant barriers
to the safe adoption of AI in the clinic. There is a need for
external validation, with one review finding that only 2 of 431
digital biomarker studies included validation at outside institu-
tions.122 Many models are trained on small, homogeneous
datasets from single academic centers, likely limiting their
generalizability to diverse clinical populations. The output of
models can be difficult to interpret and, therefore, difficult to
apply to clinical care.146,147 Many AI techniques require sophis-
ticated computational infrastructure that may not be readily
available in typical clinical settings.16 Furthermore, the optimis-
tic performance reported in research studies may at times
reflect methodological issues, including data leakage and selec-
tion bias, explaining why many models fail when tested pro-
spectively in real-world settings.148–150

Ethical challenges around the use of AI in ADRD have been
discussed in detail elsewhere,48 but in brief, ethical considerations
are particularly important in this time of rapid AI development
before deploying in vulnerable populations with cognitive im-
pairment. In response, numerous initiatives have developed
frameworks and guidelines to ensure AI applications are fair,
appropriate, valid, effective, and safe, which will at least in part
require transparency with technical performance as well as orga-
nizational capacity to manage risks associated with deploying this
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technology.151 Key concerns for the ADRD community include
ensuring informed consent from patients with diminished deci-
sion-making capacity, protecting patient privacy beyond tradi-
tional de-identification methods, and maintaining transparency
about AI decision-making processes.152–154 In contrast to approv-
ing drugs with unclear but static mechanisms of action, AI
performance can change over time, raising the importance of
explainability and interpretability to ensure humans can identify
signs of model deterioration or drift at the point of care.155–157

Patient safety risks include potential misdiagnosis, inappropriate
treatment recommendations, and adverse psychological effects
from AI interactions. Legal liability remains unclear regarding
responsibility when AI systems contribute to patient harm.

AI has the potential to exacerbate existing brain health inequi-
ties if leveraged incorrectly. Bias can be introduced through
nonrepresentative health data, the absence of diverse perspec-
tives in algorithm development, and inadequate oversight of AI-
based decisions.158 Implicit biases present in healthcare and
research settings, from subjective decision-making to stigmatiz-
ing language and stereotypes, can be encoded into algorithms.
These biases may also manifest as a lack of attention to culturally-
relevant meanings of aging and care for the patient as well as the
caregiver. For example, AImay flag a patient as “noncompliant” for
integrating faith beliefs, family values, or culture into their
understanding of disease and coping with dementia.159 Addition-
ally, racial and ethnic minority patients and those from

Table 1 AI applications in ADRD care—function and clinical readiness

Clinical domain/data type AI application/technology Function Clinical readiness

Digital cognitive assessment Cognitive tests are administered on
an electronic device, in a clinic, or
remotely

Cognitive screening, assessing for
impairment by cognitive domain,
and monitoring

Clinically available, validation ongoing

Patient history and documentation

Electronic health record (EHR)
review and synthesis

LLM-powered chart review and
summarization

Previsit preparation, history
extraction

Research stage, near-term

Patient/caregiver interviews Conversational agents (LLM-based) History gathering, symptom
documentation

Research stage, near-term

Clinical documentation Ambient AI scribes Real-time clinician-patient interview
transcription and note generation

Clinically available, validation ongoing

Data integration and interpretation LLMs as collaborative partners Synthesizing clinical data,
integrating evidence, answering
questions (future—explaining AI tool
outputs)

Research stage, near-term
(available in a narrower scope
of medical, text-only chat interfaces)

Patient/caregiver education Conversational AI companions Education, emotional support, and
care guidance

Research stage, near-term

Video-based physical examination Multimodal AI video analysis Remote detection of motor
findings, Parkinsonism

Research stage, long-term

MRI analysis and PET scan
interpretation

CNNs, traditional ML (logistic
regression, SVM)

Atrophy pattern detection,
biomarker detection, disease
classification

Clinically available, validation ongoing

Automated speech analysis Natural language processing,
machine learning, and deep
learning

Early detection, syndrome
differentiation, and monitoring

Research stage, long-term

Passive digital biomarkers Wearable/smartphone sensors,
computer/smartphone usage
tracking

Continuous behavioral/functional
monitoring, early detection, risk
stratification

Research stage, long-term

Electronic health records

Structured EHR analysis Gradient boosting, random forests Risk prediction years before disease
onset, and early detection of disease

Research stage, long-term

Unstructured clinical notes NLP models (e.g., AD-BERT) MCI-to-AD progression prediction,
subphenotyping

Research stage, long-term

Genomics/proteomics/
metabolomics

Deep learning models, multi-modal
AI

Risk stratification, disease
subtyping, drug discovery,
personalized treatment selection

Research stage, long-term

Abbreviations: AD, Alzheimer’s disease; AD-BERT, Alzheimer’s disease bidirectional encoder representations from transformers; AI, artificial intelligence; CNN,
convolutional neural network; LLM, large language model; MCI, mild cognitive impairment; ML, machine learning; MRI, magnetic resonance imaging; NLP,
natural language processing; PET, positron emission tomography; SVM, support vector machine.
Note: Clinical readiness definitions (clinically available): available in healthcare settings, though the level of evidence supporting clinical validation varies widely,
and implementation challenges have hindered use in routine clinical care. Research stage: promising evidence but requires further validation and development,
not clinically available. Clinical readiness categories represent a continuum, and individual tools within each category vary in their development stage.
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socioeconomically disadvantaged backgrounds receivemore frag-
mented medical care,160 and may have limited access to online
patient portals. This can lead to a systematic lack of data from
medical records used to train AI, degrading performance for these
populations.161 Prior work has demonstrated lack of adequate
representation of certain ethnoracial groups can lead to unfairness
(fairness being the absence of favor or prejudice toward a group
based on group characteristics) among ML models predicting
progression along the AD continuum for ADNI participants.162

Utilization of AI technologies in dementia detection and
diagnosis amongmarginalized populationsmay also be hampered
by mistrust and concerns about privacy as well as other factors,
even when these tools are designed with an emphasis on equity
and fairness.160 Great caremust be taken to not further the digital
divide and gaps in access to personalized cognitivemonitoring and
intervention based on who does or does not have access and or
familiarity with technology and the internet. Careful consideration
of language preferences, cultural beliefs, health literacy, and other
factors that affect a patient or research participant’s ability to
interface with AI-based tools will be essential if AI-based tools are
to be widely adopted among all groups. Context matters. It is
important not to reinforce or exacerbate inequities by using
prediction models that rely on historical data and patterns shaped
by structural inequity.

Conclusion and Clinical Implications
The convergence of advancing AI capabilities with the urgent
clinical need in ADRD presents an opportunity to transform
dementia care across the entire continuum—from enhancing
traditional diagnostic approaches to pioneering novel digital
biomarkers for earlier, more precise detection. It is likely that
the relatively near-term applications involve AI-enhanced proc-
essing of familiar data types that integrate with existing work-
flows: AI-assisted neuroimaging interpretation, conversational
agents interviewing patients and caregivers, and digital cognitive
assessments offering standardized, scalable alternatives to tradi-
tional testing. These, combined with the diagnostic as well as
interactive capabilities of LLMs, could represent a shift toward AI
as a collaborative partner that augments clinician capabilities
rather than replacing clinical judgment.

Emerging digital biomarkers—including speech analysis, pas-
sive monitoring, and advanced EHR mining—hold transformative
potential for continuous, unobtrusive monitoring that could
detect cognitive decline years before traditional assessments.
AI-powered omics approaches promise precision medicine capa-
bilities. However, implementationmay have a longer time horizon
as these innovative approaches remain largely research-stage and
require extensive validation before clinical deployment.

Despite significant promise, substantial barriers to implemen-
tation persist. The field suffers from limited external validation,
with most studies conducted in single institutions or highly
selected research cohorts. Technical challenges include ensuring
model interpretability for clinical decision-making, addressing
biases that could exacerbate health disparities, and developing
robust safeguards against AI hallucinations in high-stakes medical
decisions. Infrastructure requirements, including standardized
data collection protocols and computational resources, may

pose additional barriers, particularly for resource-limited health-
care settings.

The ultimate measure of success will be meaningful improve-
ments in patient outcomes, care accessibility, and quality of life
rather than technical accuracy alone. This necessitates close
collaboration between clinicians, AI developers, and healthcare
systems to ensure technological advances address real-world
clinical needs while preserving the human elements central to
compassionate dementia care. The ADRD community has a critical
opportunity to shape how these technologies are developed and
deployed, maintaining focus on clinical utility, ethical implemen-
tation, and patient-centered outcomes.
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